Email Us CALL US NOW +86-010-53345989
Huatai Xinding(Beijing)Metal Materials Co., Ltd.
What Makes Neodymium Magnets So Strong?
Magnetic solution
provider & manufacturing expert,
25 years of professional experience
Innovative solutions for sustainable developments toward a better world
Striving for excellence and continuous improvements to support your success

What Makes Neodymium Magnets So Strong?

How strong are rare earth magnets?
Magnets are an integral part of many technologies and appliances in the 21st century.

From tiny fridge magnets that hold to-do lists to powerful ones that create magnetic fields for electricity generation from wind turbines, there are many different types of magnets.

The world’s strongest magnets, also known as rare earth magnets, are made by alloying certain rare earth elements with other materials.

But just how strong are rare earth magnets, and what makes them so powerful?

Measuring magnet strength

The maximum energy product, measured in mega-gauss-oersteds (MGOe), is one of the primary indicators of magnetic strength. It is a multiplication of two measurements: a magnet’s remanence and its coercivity.

To become magnets, ferromagnetic substances need to enter the magnetic field of an existing magnet. Remanence, measured in Gauss, is the magnetism left in the magnet after removing the external magnetic field.
Coercivity is the energy required to bring a magnetic material’s magnetism down to zero. Measured in oersteds, it essentially captures the magnetic material’s resistance to demagnetization.
The strength of rare earth magnets
Each magnet has a grade, which typically denotes its strength. For example, a neodymium magnet of grade N42 has a strength of 42MGOe.

To put the power of two common rare earth magnet grades into perspective, here’s how their strength compares with common grades of other permanent magnets:

Neodymium and samarium—two of the 17 rare earth elements—are ferromagnetic, meaning that they have inherent magnetic properties and can be magnetized. These metals are first mined, refined, and then combined with materials like iron, boron, and/or cobalt to make the strongest magnetic alloys.

Neodymium magnets are typically composed of one-third neodymium, along with iron and boron. Some of the neodymium in magnets can be replaced with praseodymium, another rare earth material. For this reason, neodymium magnets are also known as NdPr magnets.

Due to their strength, neodymium magnets have found their way into various technologies, from phones and laptops to motors in electric vehicles. In fact, according to Adamas Intelligence, 90% of all EV motors use NdPr magnets. Because these magnets also offer relatively high strength for a smaller size, they are also the predominant choice for wind turbines, reducing turbine weight significantly.

Samarium-cobalt magnets exhibit exceptional resistance to extreme temperatures. These magnets can operate from temperatures as low as -270℃ up to 350℃ and are also highly resistant to corrosion. Consequently, they have important applications in harsh marine environments and technologies with high operating temperatures.

The demand for neodymium magnets
Global EV sales more than doubled last year, up from around 3 million cars in 2020 to 6.6 million in 2021. Similarly, renewable energy is expanding at a record pace, with capacity installations in 2022 set to break the record set the previous year.

With that in mind, it’s no surprise that the demand for rare earth magnets is expected to increase. Neodymium magnet consumption is forecasted to grow from more than 100,000 tonnes in 2020 to 300,000 tonnes by 2035, with EVs and wind turbines driving growth.

However, the supply chain of neodymium magnets remains a concern with China controlling the majority of rare earth extraction, refining, and downstream magnet production.                                                              

Related News
  • The Reasons Behind Continuous Prices Drop on REE

    The Reasons Behind Continuous Prices Drop on REE

    September 7, 2022SHANGHAI, Aug 19 (SMM) - Yesterday (August 18), Chen Kelong, director of the Raw Materials Industry Department of the Ministry of Industry and Information Technology, said at the 14th China Baotou Rar...view
  • Citric Acid Used to Extract Rare Earth Metals from Coal Ash

    Citric Acid Used to Extract Rare Earth Metals from Coal Ash

    November 16, 2021New research led by Sandia National Laboratories found that citric acid, a harmless food-grade solvent, can be used to extract highly sought-after rare-earth metals from coal ash.In a media brief, the...view
  • Green Coating Technology Makes NdFeB Magnet Materials Shine

    Green Coating Technology Makes NdFeB Magnet Materials Shine

    January 20, 2021The design of the automatic magnetron sputtering coating equipment has been completed, and the equipment is being customized. The installation is expected to be completed in April 2021. "The current p...view
  • Three Major Events of Rare Earths

    Three Major Events of Rare Earths

    April 6, 2021Recently, the international topic on rare earths has increased significantly. Rare earth is a strategic material that is widely used in military, industrial, agricultural and other industries. It is a...view