Email Us neo@atechmagnet.com CALL US NOW +86-010-53345989
Huatai Xinding(Beijing)Metal Materials Co., Ltd.
En
Hot Deformed Neodymium Magnet for Driving Motor
Magnetic solution
provider & manufacturing expert,
25 years of professional experience
Innovative solutions for sustainable developments toward a better world
Striving for excellence and continuous improvements to support your success

Hot Deformed Neodymium Magnet for Driving Motor

Daido Steel Co., Ltd. and Honda Motor Co., Ltd. have developed a practical hot deformed neodymium magnet containing no heavy rare earth elements (REE) that still delivers the high heat resistance properties and high magnetic performance required for the use in the driving motor of a hybrid vehicle.

Hot Deformed Neodymium Magnet for Driving Motor

Honda will first apply this hot deformed neodymium magnet with absolutely no heavy rare earth elements to the Honda Sport Hybrid i-DCD (Intelligent Dual Clutch Drive) system, a system Honda will use in the all-new Freed scheduled to go on sale this fall. Honda will continue expanding application of this technology to new models in the future.

Neodymium magnets (NdFeB, an alloy of neodymium, iron and boron), have the highest magnetic force among all permanent magnets and are used for the drive motors of electric vehicles including hybrid and full-electric vehicles. Thus, demand for neodymium magnets is expected to grow exponentially in the future. For use in the drive motors, neodymium magnets must have high heat resistance properties as they are used in a high temperature environment. Adding heavy rare earth elements (dysprosium and/or terbium) to the neodymium magnets has been a conventional method to secure such high heat resistance. However, major deposits of heavy rare earth elements are unevenly distributed around the world, and also are categorized as rare metals; thus, the use of heavy rare earth elements carries risks from the perspectives of stable procurement and material costs. As a result, a reduction in the use of heavy rare earth elements has been one of the major challenges needing to be addressed in order to use neodymium magnets for the drive motors of hybrid vehicles.

Daido Electronics Co., Ltd., a wholly owned subsidiary of Daido Steel, has been mass-producing neodymium magnets using the hot deformation method, which differs from the typical sintering production method for neodymium magnets.The hot deformation method is a technology that enables nanometer-scale crystal grains to be well-aligned in order to realize a fine crystal grain structure that is approximately ten times smaller than that of a sintered magnet, which makes it possible to produce magnets with greater heat resistance properties. Daido Steel and Honda jointly developed new neodymium magnets while Daido Steel further evolved its hot deformation technologies and Honda leveraged its experience in development of drive motors and revised the shape of the magnet. Through these joint development efforts, the two companies achieved, for the first time, a practical application of a neodymium magnet which contains absolutely no heavy rare earth yet has high heat resistance and high magnetic performance suitable for use in the drive motor of hybrid vehicles.

Honda also designed a new motor to accommodate this new magnet. In addition to the shape of the magnet, Honda revised the shape of the rotor to optimize the flow of the magnetic flux of the magnet.As a result, the hot deformed neodymium magnet that contains absolutely no heavy rare earth became usable for the drive motor of a hybrid vehicle, demonstrating torque, output and heat resistance performance equivalent to those of a motor that uses the conventional type of magnet.

Adoption of this technology enables a break from the constraints associated with heavy rare earth, which had been one of the challenges to expanding the use of neodymium magnets. This technology will make it possible to avoid resource-related risks and diversify channels of procurement.

With the newly-developed hot deformed neodymium magnet, Daido Steel will make a new entry into the market for magnets used for drive motors of hybrid vehicles, which has been basically monopolized by sintered neodymium magnets.Daido Steel will continue pursuing the development of heavy rare earth-free magnets with further improved properties.Furthermore, Daido Steel has been procuring magnetic powder, the raw material for magnets, from Magnequench International Inc. (located in Toronto, Ontario, Canada), and Daido Steel will work together with Magnequench to develop new types of raw magnetic powders for the purpose of realizing enhanced magnetic properties.

Related News
  • Corrosion Resistance Testing of Neodymium Magnet

    Corrosion Resistance Testing of Neodymium Magnet

    October 13, 2020The corrosion resistance of sintered neodymium iron boron permanent magnets is not only related to the corrosion resistance of the substrate, but also related to the type of coating on the magnet surf...view
  • Industrial Magnet Introduction

    Industrial Magnet Introduction

    June 10, 2019When we buy industrial magnets, we will encounter various selection problems. This article will introduce the related introduction of industrial magnets.Industrial magnets are high-strength magnets, a...view
  • Eddy Current Loss of Rare Earth Permanent Magnets

    Eddy Current Loss of Rare Earth Permanent Magnets

    November 23, 2020Both samarium cobalt and neodymium iron boron are metal materials. Due to the low resistivity of metal materials, the conductivity is very high. This is not a good thing for rotating machinery such as...view
  • Application of Magnetic Materials in Industry

    Application of Magnetic Materials in Industry

    August 6, 2019In fact, magnetic materials can be seen everywhere in our life, such as Fe3O4, that is, rust. It is a natural magnet can be seen everywhere in our life. In our industrial production, magnetic material...view